Balanced Sparse Model for Tight Frames in Compressed Sensing Magnetic Resonance Imaging
نویسندگان
چکیده
Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B) converges faster than previously proposed algorithms accelerated proximal algorithm (APG) and alternating directional method of multipliers for balanced model (ADMM-B).
منابع مشابه
Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملCompressed Sensing for High-Spatiotemporal Functional Magnetic Resonance Imaging and Its Application of Exploiting Sparsity for Image Denoising
In this project, we apply compressed sensing (CS) technique to achieve high-spatiotemporal functional magnetic resonance imaging (MRI), which is very challenging with conventional approaches due to physical limitations such as slew rate. We also use its ideas of exploiting sparsity for image denoising. Keywords—compressed sensing; MRI; sparsity; image denoising
متن کاملTwo-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging
Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRI methods can still be improved due to eithe...
متن کاملImage quality parameters in MR images, reconstructed by using compressed sensing
Introduction: Compressed sensing is a technique that allows accelerating data acquisition in the presence of sparse or compressible signals ([5], [6], [7]). Especially, in magnetic resonance imaging, where measurements may be time consuming, compressed sensing might give a chance to reduce the scan time. However, up to now there are no studies that examine basic imaging parameters like image no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015